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Over the past two decades a significant number of OCT
segmentation approaches have been proposed in the lit-
erature. Each methodology has been conceived for and/or
evaluated using specific datasets that do not reflect the
complexities of the majority of widely available retinal
features observed in clinical settings. In addition, there
does not exist an appropriate OCT dataset with ground
truth that reflects the realities of everyday retinal features
observed in clinical settings. While the need for unbiased
performance evaluation of automated segmentation algo-
rithms is obvious, the validation process of segmentation
algorithms have been usually performed by comparing
with manual labelings from each study and there has been
a lack of common ground truth. Therefore, a performance
comparison of different algorithms using the same ground
truth has never been performed. This paper reviews re-
search-oriented tools for automated segmentation of the
retinal tissue on OCT images. It also evaluates and com-
pares the performance of these software tools with a com-
mon ground truth.
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1. Introduction

Optical coherence tomography (OCT) provides a
non-invasive, high-speed and high-resolution ap-
proach to visualize the cross-sectional or even three-
dimensional tissue structures in vivo. OCT has
added significant contributions to many fields of clin-
ical research since its invention in 1991 and since
then it has possibly become the most commonly used
ophthalmic decision-making technology [1–4]. Dur-
ing the last decade, OCT technology has advanced
drastically in terms of speed, resolution and sensitiv-
ity and has become a key diagnostic tool in the areas
of retinal and optic nerve pathologies [5]. Recent ad-
vancements in OCT imaging allow the visualization
of retinal structures in a few seconds with an axial
resolution of ~2 microns [6–7]. The upgrade of both
scanning speed and resolution has significantly in-
creased the potential of OCT to visualize more de-
tailed retinal structures. However, the amount of
data to be analyzed has also increased significantly.
Automatic analysis algorithms or software are there-
fore essential to the clinical applications because the
huge amount of volumetric data is no longer possi-
ble to be analyzed by visual identification or manual
labeling.

The OCT segmentation algorithms have evolved
with hardware and software improvements within
and between manufacturers, frequently with differ-
ences in resultant measurements, so the straightfor-
ward comparability of measurements is not guaran-
teed when clinicians and researchers use different
generations of OCTs within studies or within indivi-
dual patients. In addition, major developments of
both hardware and software across the years have
improved the capabilities of the technology to inves-
tigate the multi-layered structure of the retina in
more detail. For example, the commercial software
of Bioptigen Inc. (Envisu SD-OCT, Bioptigen Inc.,
Morrisville, North Carolina, USA), Canon (OCT-
HS100 SD-OCT, Canon Europe, N.V.), Optovue,
Inc. (i-VUE SD-OCT, Optovue, Fremont, Califor-
nia, USA) and Spectralis SD-OCT (Heidelberg En-
gineering, Germany) could segment 8, 11, 3 and 11
retinal surfaces, respectively [8–11]. Therefore, dif-
ferences in automatic segmentation algorithm results
based on either OCT device or quantitative software
selection would have important consequences in
clinical practice and research.

As the retina is a multi-layered tissue, it is impor-
tant to segment the various layers or surfaces in
order to fully explore the retinal structure and func-
tion. The development of OCT segmentation soft-
ware has progressed extensively during the last dec-
ade. It was originally a proprietary software solution
of individual manufacturers of OCT but it has be-
come a generic software solution of various research
groups that have developed algorithms to automati-

cally detect retinal surfaces [12–26]. A review of the
early methods can be found in [27]. There is also a
fully automated research tool that offers commercial
software with an independent platform for process-
ing data from different OCT scanners [28].

The earliest image analysis software was mainly
developed for Time-Domain OCT, i.e. Stratus OCT
(Carl Zeiss Meditec, United States), using features
in each A-scans to form smooth boundaries [12–17].
The OCT scan pattern was mainly a single line or
radial lines across the fovea. The significant ad-
vancement of imaging technology that occurred
since then in the commercial devices in terms of
scanning speed and resolution has facilitated a dense
raster scan of the entire retinal structure. The re-
cently developed OCT segmentation algorithms by
research groups are able to segment the retinal sur-
faces in OCT volume data using the graph-based
method [18–22], active contour [23] and texture
models [24]. The automatic algorithms were also de-
veloped to segment the drusens [25] and retinal fiber
layer in optic nerve head region [26]. Our recent
work on OCT Retinal IMage Analysis 3D (OCTRI-
MA3D) has been also able to delineate 8 retinal sur-
faces fast and accurately [29]. Some of these pub-
lished works even provided standalone software
tools developed for Spectralis SD-OCT’s volume
data that are freely available to be used for research
purposes [30–32]. However, the validation process of
OCT segmentation algorithms has been usually per-
formed by comparison of segmentation results with
manual labelings from each study, and there has
been a lack of common ground truth. Of note, the
first intent to use a large, manually segmented data
set consisting of 466 B-scans from 17 healthy eyes
was segmented twice by different operators and
compared to the automated segmentation algorithm
[24]. However, up to the authors’ knowledge, a per-
formance comparison of different algorithms using
the same ground truth has never been accomplished.

It is worthwhile to mention that the ground truth
forms the foundation for all comparisons with the
output of any automatic segmentation method to be
evaluated. The complex structure of the retinal tis-
sue and the variety of research tools lately devel-
oped points to an in-depth analysis of results that
can provide the users with a widespread range of
evaluation scenarios and anticipated future needs (as
evidenced by current developments). Particularly,
Heidelberg Engineering offers a widely available
platform with the latest software upgrade being cur-
rently available to all users. An all layer segmenta-
tion function was recently included in the latest soft-
ware version of Spectralis 6.0, which is able to detect
11 retinal surfaces and measure the thickness of 10
layers [11]. However, only minor information re-
garding the performance of this proprietary software
has been revealed. The Spectralis platform also al-
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lows access to the imaging data and therefore pub-
licly available segmentation tools have been mostly
developed for the OCT volume data obtained with
the Spectralis device [30–32]. This calls for the need
to evaluate and compare the performance of all
these research tools including ours along with the
Spectralis’s own segmentation software with a com-
mon ground truth. In this context, the aim of this
study is to review research oriented tools for auto-
mated segmentation of the retinal tissue on OCT
images [29–32] including Spectralis 6.0 [11], as well
as our own custom-built software [29] and compare
their performances using the same set of input data
and evaluation criteria. Although other commercial
OCT devices offer the capability of standalone soft-
ware for data review, the evaluations performed
were based on the predominant OCT volume data
(i.e., Spectralis SD-OCT) used by the publically
freely available software. It is worthwhile to mention
that outcomes are not presented in terms of better
or worse or as more or less accurate. The major in-
tent of this review is to show a number of important
issues surrounding the lack of a representative and
practical dataset that could be used as a common
ground truth for the evaluation of the performance
of OCT quantitative methods.

2. Materials and method

2.1 SD-OCT volume data collection

In this study, the SD-OCT volume dataset used in
the performance evaluations was obtained from sub-
jects enrolled in studies involving patients with dia-

betes mellitus and complications in the eye. This da-
taset consisted of 610 B-scans with the size of
768 × 496 pixels collected from 10 eyes of patients
with mild non-proliferative diabetic retinopathy and
relatively latent segmentation difficulty. We note
that in this paper, the term “surface” refers to a set
of pixels that fall on the interface between two
layered structures.

2.2 Subjects

A total of ten eyes (8 OD, 2 OS) from 10 diabetic
subjects (6 male, 4 female) with mild non-prolifera-
tive diabetic retinopathy (53 ± 6 years old) were
scanned by Spectralis SD-OCT at the Bascom Pal-
mer Eye Institute, Miami, USA. This study was ap-
proved by an Institutional Review Board at the Uni-
versity of Miami. Prior to enrollment, the research
study was explained to the subject and informed
consent was obtained according to the tenets of the
Declaration of Helsinki. Patients with any medical
condition that might affect visual function other than
diabetes were excluded from the study.

2.3 Image acquisition and retinal layer
classification

The subjects were dilated and then scanned by Spec-
tralis SD-OCT with the IR+OCT protocol using the
setting of 30° IR scan angle and 30° × 25°
(8.5 × 7.1 mm) OCT pattern. To reduce the speckle
noise and enhance the image contrast, every B-scan

Figure 1 International Nomencla-
ture for the classification of retinal
layers on OCT images. Image was
taken from [33] with permission of
the author.
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was the average of five aligned images using the Tru-
Track™ active eye tracking technology (ART = 5).
The size of the OCT volume collected from the study
subjects was 768 × 61 × 496 pixels (width × length ×
depth) and the resolution of each pixel in the B-scan
was 11.11 μm/pixel and 3.87 μm/pixel in the transver-
sal and axial directions, respectively.

To facilitate the communication of anatomy and
disease pathophysiology, a consensus nomenclature
(as shown in Figure 1) for the classification of retinal
layers in Spectralis SD-OCT images developed by an
international panel with expertise in retinal imaging
[33] was applied throughout the paper and the abbre-
viations are defined in Table 1. Note that the following
anatomical structures as described in [19] were not
used in the current study as they are not part of the
neuro-retina that is classically the target of image seg-
mentation: 1. Posterior cortical vitreous, 16. Sattler’s
layer, 17. Haller’s layer, and 18. Choroid sclera junc-
tion. The transitions from 8.1 Henle’s fiber layer to 8.2
Outer nuclear layer, from. 9. External limiting mem-
brane to 10. myoid zone of photoreceptors, and 11. el-
lipsoid zone to 12. outer segment of photoreceptor are
too smooth to be segmented by any existing algo-
rithms, hence they are merged as HFLONL, ELM-
MYZ, and ELZOS, respectively, in this study.

2.4 Image analysis software

In this study, we evaluated the following five auto-
mated quantification software for segmentation of
macular volume data:

2.4.1 Spectralis 6.0

In this study, the Spectralis SD-OCT standalone
software for data review is the commercial software

used based on the predominant OCT volume data
(i.e., Spectralis SD-OCT) employed by the publically
freely available software evaluated. The built-in soft-
ware of Spectralis SD-OCT offers the segmentation
of 11 surfaces in the latest software version of 6.0.
The users can easily obtain the thickness or volume
of three composite retinal segments including Retina,
Inner Retinal Layer and Photoreceptors as well as 7
retinal layers, including RNFL, Ganglion Cell Layer,
Inner Plexiform Layer, Inner Nuclear Layer, Outer
Plexiform layer, Outer Nuclear Layer, Retinal Pig-
ment Epithelium Layer in each ETDRS grid. How-
ever, no technical details have been revealed about
this proprietary software in the user manual [11] and
the validation of the software was also not found in
the literature by a detailed search in PubMed and
Google. As the results of surface positions is not
provided by Spectralis 6.0 directly, we extracted the
layer boundaries by detecting color annotation in
the exported video and connected the detected pix-
els by using Dijkstra’s algorithm [34]. An example of
boundary extraction is shown in supporting informa-
tion S1.

2.4.2 IOWA reference algorithm

A graph theoretical approach was developed to seg-
ment optimal surface in volumetric images [35] and
was applied to segment multiple surfaces on the vo-
lumetric OCT volumes [20] by Retinal Image Analy-
sis Laboratory in the Iowa Institute for Biomedical
Imaging [30]. The standalone software, IOWA Re-
ference Algorithm, could be downloaded free for re-
search use [30]. This algorithm is able to segment
eleven surfaces for each OCT volume.

Table 1 Classification of retinal layers used in our study according to the international OCT consensus nomenclature
[33].

Consensus
Number

Layer
Abbreviations

Layer Full name

2 PRS Pre-retinal space
3 NFL Nerve fiber layer
4 GCL Ganglion cell layer
5 IPL Inner plexiform layer
6 INL Inner nuclear layer
7 OPL Outer plexiform layer
8.1 + 8.2 HFLONL Henle’s Fiber layer and Outer nuclear layer
9 + 10 ELMMYZ External Limiting Membrane and Myoid zone of the photoreceptors
11 + 12 ELZOS Ellipsoid zone and outer segment of the photoreceptors
13 IDZ Interdigitization zone with retinal pigment epithelium
14 RPE Retinal pigment epithelium or Bruch’s complex
15 CRC Choriocapillaris
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2.4.3 AUtomated retinal analysis tools
(AURA)

Lang et al. built a random forest classifier to seg-
ment 9 retinal surfaces. In this algorithm, the results
of a probability map for each surface are used to
find the optimal retinal surface by the graph-search
method [21]. A set of 27 features covering spatial
awareness, local and context-ware information is se-
lected and the manual labelings of 56 B-scans are
used to train the classifiers. The author has made
both the code of AUtomated Retinal Analysis tools
(AURA) and the trained classifier for Spectralis SD-
OCT data publicly available [31]. In our study the
default setting was used and final set of parameters
(FSP) [21] was applied to segment our data.

2.4.4 Dufour’s algorithm

Another modification of optimal graph search in ret-
inal surface segmentation was provided in the work of
Dufour. P [22], which improves the accuracy and ro-
bustness of the original framework by using soft con-
straints to add prior information from a learned mod-
el. Six retinal layers could be segmented automatically
in both healthy and macular edema subjects. The
standalone software could be downloaded at [32] and
is abbreviated as Dufour’s algorithm in this paper.

2.4.5 OCTRIMA3D

Our previous work deployed a shortest-path graph
search based on the original development of Chiu
et al. [19] for OCT volume data obtained with a Biop-
tigen device (Bioptigen Inc., Morrisville, North Caro-
lina, USA). OCTRIMA3D is able to segment 8 retinal
surfaces in the macular area and its accuracy was
found to be comparable with the other automated
quantification software [29]. By adding inter-frame
flattening, inter-frame search region refinement,
masking and biasing the spatial dependency between
adjacent frames we were able to reduce the processing
time compared to the original study by Chiu et al. [19].

2.5 Ground truth description
and evaluation criteria

A suitable dataset with ground truth that reflects the
realities of everyday OCT imaging in clinical settings
is a demanding need for objective performance eva-
luation of both commercial and research oriented

software for segmentation of OCT volume data.
However, the creation of an OCT ground truth is
not a trivial matter because of the significant cost as-
sociated to its creation, as it impacts on both the de-
sign and the maintainability of the OCT volume da-
taset. This cost is due to the circumstance that the
construction of an OCT ground truth cannot be fully
automated because it is a time-consuming and labor-
ious process that has been reported as a limitation in
the majority of previous studies [11, 29–32]). Typical
times for creating an OCT ground truth can run in
the hours for a single volume dataset. In addition,
the effectiveness of the ground truth depends of the
following requirements:

1. Richness of information, to facilitate different
clinical evaluation settings.

2. Accuracy, both in terms of nonexistence of hu-
man errors and in the intrinsic capability to
characterize complex information.

3. Ease of design and use, in terms of the capa-
city to enable the evaluation of large datasets.

4. Ease of understanding, in terms of organiza-
tion to facilitate use and maintenance.

5. Efficiency of comparison, to allow evaluation
using large datasets.

6. Anticipation of future needs, in terms of ex-
tensibility to prevent uselessness.

In this study, a ground truth obtained from a patho-
logic dataset was designed using manual grading
from macular OCT volume data that consisted of 50
B-scans with a dimension of 768 × 496 pixels and the
OCT volume outside the 6 × 6 mm2 area around the
foveola was discarded. Each volume was represented
by 5 systematically selected B-Scan, including 1 from
the fovea center, 2 from the perifovea and 2 from
the parafoveal regions.

Therefore, a total of 250 (5 surfaces per B-scan)
surfaces were manually outlined by each grader in the
pathologic dataset. We note that each of the auto-
mated quantification software for segmentation of ma-
cular volume data has its own advantages and draw-
backs and choice has to be made according to the
needs and knowledge of users. In addition, some of
them have the capability of handling macular edema.
However, our ground truth obtained from OCT data
collected from subjects with non-proliferative mild
diabetic retinopathy is not designed to evaluate the
performance when severe pathology is present. Our
study is conducted to evaluate the performance of the
research-oriented software against the ground truth
dataset constructed using the following four criteria:

2.5.1 Target surfaces and region of interest

We evaluated the output surfaces provided by the
five automated quantification software and estab-
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lished a common notation of the surfaces to provide
guidance to the ophthalmic researchers to make a
choice. There was a lack of common notations in the
various image analysis software tools and hence it
may cause confusion to the users. For example, the
name of the retinal layers, i.e. RNFL, IPL and OPL
were often used to denote the outer surface of layers
in Spectralis 6.0 but other software adopted the con-
vention of A–B, where A and B are the adjacent
layer structure in the volume OCT (e.g. RNFL-
GCL). Surfaces are denoted as A–B, where A and
B are the adjacent layers shown in Table 1. To
shorten the notation, a unique surface number is de-
fined in Table 2.

Besides the differences in the detected surface,
the users need to know the area of interest for each
automated segmentation software as well. For exam-
ple, some software only segment the OCT volume
within an area of 6 × 6 mm2 around the fovea while
others can detect the retinal surfaces in the entire in-
put volume data.

2.5.2 Input data format, prerequisite
software, and output format
of surface location

The usefulness of the software was limited by the fol-
lowing three obstacles: (a) Input data format: input
data in the format of *.vol was only available to lim-
ited research groups authorized by Heidelberg Engi-
neering; (b) Prerequisite software: Matlab or C++
compiler may be needed to run the segmentation suc-
cessfully; (c) The exact locations of each surface are
provided in different file formats, which may be diffi-
cult to be extracted.

2.5.3 Accuracy of surface detection

The accuracy of the automated software was evalu-
ated using the ground truth datasets. As the line
width of the surface location plotted in each B-scan
was usually 2–3 pixels wide, the segmentation errors
of the automated algorithms were hard to be re-
vealed by visual inspection. Hence, ground truth from
manual grading was used to evaluate the accuracy of
the five automated segmentation methods. Using a
customized tool implemented with Matlab 2014a, two
expert manual graders labeled surfaces 1, 2, 4, 6 and
11 in 50 representative B-scans (with a total of 250
surfaces outlined by each grader) collected from a set
of 10 macular SD-OCT volumes. Particularly, once
the grader clicked on the points along each border,
the manual tracing resulting from linear interpolation
between the clicked points was taken as the final
ground truth for comparison. The grader could also
move, add and delete the clicked points to modify the
boundary tracings. The labeling task was performed
with extreme carefulness by the two observers, Ob-
server 1 and Observer 2 without seeing any segmen-
tation results from any automated software or each
other. On average, it took about 20 minutes to label
one frame. The delineated results from Observer 1
were taken as the ground truth and the inter-observer
difference were used as a benchmark to evaluate the
accuracy. The segmentation error of surfaces outlined
by the five automated software were compared with
inter-observer differences using one-tailed paired T-
Test with setting the significance level at p < 0.001
due to the large number of comparisons. The null hy-
pothesis was that inter-observer difference is signifi-
cantly higher than the automated software. If the null
hypothesis was rejected, the alternative hypothesis
“automated method has smaller or equal mean un-
signed error” was concluded.

2.5.4 Processing time

Another criteria to consider is the processing time,
which is important for the applications in large po-
pulation studies. The software were all run on a
computer with a CPU of Intel® Core™ i7-2600@
3.4 GHz 3.4 GHz.

3. Results

3.1 Target surfaces and regions of interest

The retinal surfaces segmented by five methods are
reported in Table 3 and the overlay of the target sur-

Table 2 Retinal surface notations and sequence in our
study. The abbreviations of the layers are shown in Ta-
ble 1.

Surface Sequence Surface Notation

1 PRS-NFL
2 NFL-GCL
3 GCL-IPL
4 IPL-INL
5 INL-OPL
6 OPL-HFLONL
7 HFLONL-ELMMYZ
8 ELMMYZ-ELZOS
9 ELZOS-IDZ
10 IDZ-RPE
11 RPE-CRC
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faces on one sample B-Scan is shown in Figure 2.
Although Spectralis 6.0 could segment all 11 sur-
faces, the surface 8 and 9 could not be extracted and
they were not used in the analysis. The IOWA refer-
ence algorithm could generate 11 surfaces, but the
hyper-reflective surface BMEIS (shown as the
dashed line in Figure 2c) was not detected by the
other software evaluated and hence it was not con-

sidered in this study. AURA, Dufour’s algorithm
and OCTRIMA3D could segment 9, 6 and 8 sur-
faces, respectively. Because existing quantitative stu-
dies are mostly based on the ETDRS grid, the vol-
ume data outside of the 6 × 6 mm2 area is not con-
sidered by AURA and OCTRIMA 3D.

3.2 Input data format, prerequisite software,
and output format of surface location

The review of the input data format, prerequisite
software, output format of surface location and other
modality support is shown in Table 4 and discussed
briefly as following.

• Input data format: The segmentation tool of
Spectralis 6.0 was integrated with the database
and the surface segmentation of the whole vol-
ume could be performed by just one click
without the need of providing input data.
Other software required the input of volu-
metric data in *.vol or *.xml format. The ex-
port of data in *.vol is a special raw format
provided by Heidelberg Engineering to the
collaborating institutes and not obtainable to
the public. Standard built-in software supports
*.xml format and is hence easier to use for the
clinicians. In this study, we converted the vol-
ume in the *.xml format using the template
provided in [36].

• Prerequisite software: The prerequisite of
AURA is the Matlab and C++ compiler, which
required additional license fee to use the soft-
ware. The OCTRIMA3D application needed
the Matlab Compiler Runtime (MCR), which
was freely downloadable from [37]. The other
software tools could be run as standalone tools
on any computer running on Windows operat-
ing system.

• Output format of surface locations: The output
of surface locations was not provided by Spec-
tralis 6.0. The other software provided the out-
put in different formats. AURA and OCTRI-
MA3D records the location of surfaces using

Table 3 Target surfaces and region of interest of five research-oriented quantification software (check mark means
the segmented surface result can be exported, cross mark means the surface is not segmented, triangle mark means
the surface is segmented but results can not be exported).

Software Name 1 2 3 4 5 6 7 8 9 10 11 ROI (mm)

Spectralis 6.0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ Δ Δ ✓ ✓ Full
IOWA ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ Full
AURA ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ × ✓ 6 × 6
Dufour’s ✓ ✓ × ✓ × ✓ × ✓ × × ✓ Full
OCTRIMA3D ✓ ✓ × ✓ ✓ ✓ × ✓ ✓ × ✓ 6 × 6

Figure 2 Targeted retinal surfaces in automated segmenta-
tion software. The colored numbers represents the surface
sequence shown in Table 2. (a) An example raw Spectralis
SD-OCT image, which is 369 μm inferior to the foveola. A
parafoveal scan is chosen in order to show all the surfaces
segmented. The retinal surfaces in automated segmentation
software are shown from (b)–(f). (b) Spectralis 6.0 (c)
IOWA Reference algorithm (d) AURA (e) Dufour’s algo-
rithm (f) OCTRIMA3D. Note that the IOWA reference al-
gorithm could generate 11 surfaces, but the hyper-reflective
surface BMEIS (shown as the green dashed line in (c)) was
not detected by the other software and hence it was not
evaluated in this study.
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*.mat format, where the indices (x, y, i) in the
output matrix denoted transversal coordinate,
frame number, and surface indices, respectively.
The format *.raw and .csv represents the sur-
face location as a one-dimensional array, which
represents the location of each surface as a ras-
ter scan. The surface.xml file records the sur-
face locations using tabs 〈z〉 in each surface, but
the extraction of the value is hard to handle due
to the large size.

3.3 Accuracy of surface detection

The results of surface location errors from five auto-
mated algorithms were compared with inter-obser-
ver differences on surfaces, 1, 2, 4, 6 and 11. The
mean unsigned errors in the scans from center fo-

veal, perifoveal and parafoveal regions are pre-
sented in Tables 5 and the histogram is shown in
Figure 3. The systematic error was calculated as the
average signed error in all scans. The positive and
negative values of signed errors in the tables indi-
cated that the detected locations were below or
above the ground truth, respectively. The segmenta-
tion error of various surfaces showed the following
trends:

The unsigned segmentation errors on the surface
1 by OCTRIMA3D were smaller than the inter-ob-
server difference (p < 0.001) in all regions. AURA
had smaller deviation from the ground truth than
the inter-observer difference (p < 0.001) in the cen-
ter fovea region. The surface 2 (NFL-GCL) was bet-
ter delineated by Spectralis, AURA and OCTRIMA
in the center fovea region (p < 0.001). Both AURA
and OCTRIMA 3D detected the surface 4: IPL-INL
more reliable than the manual labeling in all regions
(p < 0.001). The unsigned error of Spectralis and
AURA in the perifoveal and parafoveal locations
was smaller (p < 0.001) than the inter-observer dif-
ference on surface 6: OPL-HFLONL. Moreover,
RPE-CRC surfaces in all scans were delineated
more accurately in Spectralis, AURA and OCTRI-
MA. The IOWA reference algorithm and Dufour’s
algorithm tend to have larger systematic error than
Spectralis, AURA and OCTRIMA3D. Hence the
mean unsigned error was not significantly smaller
than the inter-observer differences (P < 0.001). It is
worth noting that the performance comparison does

Table 4 Review of input data format, prerequisite soft-
ware, output data format

Algorithm Input Prerequisite Output

Spectralis 6.0 – No Not provided
IOWA *.vol No Surface.xml
AURA *.vol Matlab and C++

compiler
*.mat

Dufour’s *.xml No *.raw and *.csv
OCTRIMA3D *.xml MCR *.mat

Table 5 Mean unsigned errors (pixels) of five automated segmentation algorithms as compared to the inter-observer
differences obtained for the pathological dataset. The values in bold indicate that the errors were smaller than or
equal to the inter-observer difference.

Surface Spectralis IOWA Dufour AURA OCTRIMA Inter-Observer

1 Fovea 1.07 1.76 1.32 0.73 0.75 0.86
Perifovea 1.28 1.7 1.42 0.94 0.77 0.95
Parafovea 1.25 1.8 1.52 1.35 0.8 0.83
Signed error 1.1 –1.72 –1.36 –0.4 –0.36 0.28

2 Fovea 1.11 2 1.85 1.11 1.16 1.24
Perifovea 1.64 1.42 2.63 1.01 1.19 1.05
Parafovea 1.22 1.53 3.25 1.17 1.04 1.11
Signed error –0.46 –1.21 –2.42 –0.19 0.42 0.2

4 Fovea 1.14 1.68 1.45 1.01 1.07 1.1
Perifovea 1.88 1.36 1.21 0.87 0.9 1.13
Parafovea 1.66 1.64 1.63 0.92 0.93 1.08
Signed error –1.11 –1.28 –1.06 –0.01 0.27 0.3

6 Fovea 1.55 1.56 1.75 2 2.45 1.42
Perifovea 1 1.53 1.5 1.06 1.32 1.22
Parafovea 0.99 1.39 1.61 1.03 1.24 1.19
Signed error 0.54 –0.73 1.1 1.68 2 0.08

11 Fovea 0.87 1.71 1.77 0.75 0.87 1.08
Perifovea 0.83 1.7 1.6 0.76 0.91 1.14
Parafovea 0.95 1.84 1.69 0.86 0.84 1.08
Signed error –0.22 –1.73 –1.55 –0.14 0.06 –0.65
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not imply the quality of the algorithm. Rather, the
deviation should be interpreted as the ground truth
difference from each research group. In general,
automated algorithms use specific optimum settings
as well as training ground truth datasets. Smaller un-
signed error indicates the training ground truth is
closer to our testing ground truth created by the Ob-
server 1. As illustrated in Figure 4, the definition of
OPL-HFL-ONL is vague in certain regions. The re-
sults from each automated software are a conse-

quence of the difference in the delineated bound-
aries during each particular software training stage.

3.4 Processing time of the five automated
software as compared to manual labeling

The processing time of Spectralis 6.0, the IOWA re-
ference algorithm, AURA, Dufour’s algorithm and

Figure 3 Histogram of surface detection errors from 5 automatic algorithms as compared to inter-observer differences. The
average unsigned errors are shown below each histogram. (a)–(e) surface 1, 2, 4, 6, and 11.

Figure 4 Effect of training ground truth choices on surface detection: (a) A sample OCT raw image section. (b) The detec-
tion results of the surface 6 by five automatic software and ground truth obtained for the sample image shown in (a). The
area with major discrepancy is enclosed with a black rectangle box. The difference in the surface detection is due to the
training ground truth used by different groups. A common ground truth is necessary to have comparable results in the
measurement of retinal layer thickness and topography.
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OCTRIMA 3D were 65, 93, 152, 75 and 28 seconds,
respectively. For manual labeling, each frame was la-
beled in about 20 minutes and thus the whole data-
set required about 16.7 hours of work from each ex-
pert.

4. Discussion

This study evaluated a total of five research-oriented
software for the automated segmentation of OCT
volume data in the macular region. The advance-
ment of OCT imaging technology has allowed the
high-speed, non-invasive and high-resolution visuali-
zation of three-dimensional retinal structure in vivo
but the processing of the volumetric data is still chal-
lenging. Manual labeling of the entire volume data is
infeasible; therefore automated segmentation of the
OCT volume data plays an essential role in exploit-
ing the diagnostic capability of OCT imaging. Var-
ious research groups have developed automated seg-
mentation algorithms but there has been a lack of
evaluation of the different automated solutions using
the same ground truth. Our work evaluated five
standalone automated software tools that are able to
segment Spectralis SD-OCT images taken at the ma-
cular region. The evaluation was performed using an
OCT volume dataset collected from eyes of subjects
with diabetes and non-proliferative mild diabetic re-
tinopathy. A common surface terminology was es-
tablished by using the international nomenclature
consensus developed recently for structures revealed
on OCT images. The evaluation was conducted by
using the following three criteria: (a) detected sur-
faces and area of interest; (b) input data format, pre-
requisite software and output surface location for-
mat; (c) surface detection accuracy (d) processing
time. Two experienced graders labeled 5 retinal sur-
faces in representative images of the OCT volume
dataset carefully using a custom-built program and
the inter-observer difference was used to benchmark
the accuracy of software. Linear interpolation was
used to draw the boundaries in each B-scans and
each boundary was interpolated from 30–40 manu-
ally clicked points. On average, each observer took
about 16.7 hours to label the dataset.

Spectralis 6.0 provides the segmentation of 11
surfaces in the entire volume but results for the sur-
faces 8 and 9 could not be exported. The segmenta-
tion module is incorporated into the built-on soft-
ware and hence no input is needed from the users.
However, the standard version of the software does
not allow the export of surface locations. The mean
unsigned error was significantly smaller than the in-
ter-observer differences in surface 2: NFL-GCL
(center foveal region), surface 6 (perifoveal and par-
afoveal regions) and surface 11 (all regions)

(P < 0.001). The segmentation process was com-
pleted in 65 seconds.

IOWA reference algorithm is able to detect 11
retinal surfaces in the entire volume dataset. The in-
put data requires *.vol format and the output of the
surfaces location is written in the surface_xml file.
The average signed errors and unsigned errors in
the detected surface were larger than the inter-ob-
server difference. This is most probably caused by
the disagreement between the manual labeling from
the training set in IOWA and our ground truth. A
bias correction step may be needed to correct the
disagreement. Additional feature of the software
was the support of wide range of OCT devices, in-
cluding Cirrus HD-OCT, Bioptigen and Topcon.
The segmentation process was completed in 93 sec-
onds.

As a standalone software that supports the stand-
ard output function from Spectralis 6.0, the Dufour’s
algorithm is able to segment six retinal surfaces in
the entire volume scan. It has the capability to also
segment the volume data from patients with macular
edema. The mean unsigned errors were significantly
greater than the inter-observer differences in all sur-
faces. Again, the disagreement is mainly due to the
difference in the training data. The segmentation
process was completed in 75 seconds.

AURA is able to segment 8 surfaces in the area
6 × 6 mm2 around the fovea. It requires the input
data in the *.vol format, Matlab and C++ compiler
to run the program. The mean unsigned error was
smaller than or equal to the inter-observer differ-
ences in the surfaces 1 (center fovea), 2 (center fo-
veal location), 4 (all regions), 6 (perifoveal and par-
afoveal regions) and 11 (all regions). The segmenta-
tion process was completed 152 seconds. OCTRI-
MA3D is able to segment 8 retinal surfaces in the
6×6mm2 region of the macula. It requires the instal-
lation of the compatible MCR to run the program
and also supports the standard Spectralis output ex-
port format. The unsigned errors of surface 1 (all re-
gion), 2 (center foveal location), 4 (all regions), 11
(all regions) were smaller than or equal to the inter-
observer differences. The whole segmentation pro-
cess was finished in 28 seconds.

The development of automated segmentation
software is essential in exploiting the diagnostic cap-
ability of optical coherence tomography. The clinical
segmentation reality of common pathologies could
vary across retinal regions and diseases. Therefore,
the segmentation accuracy of the retinal structure is
critical for the proper assessment of retinal pathol-
ogy and current treatment practice. However, the
optimal automated segmentation software for OCT
volume data remains to be established. This study
reveals that the built-in software from Spectralis as
well as the research-oriented software evaluated
could achieve accuracy close to the inter-observer
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differences. It also revealed that most of the auto-
mated segmentation software failed to segment some
retinal surfaces mostly in regions where a confident
unbiased decision by humans was also hard to ob-
tain. However, these results were obtained with the
use of an OCT volume dataset collected from 10 dia-
betic subjects; which is not the actual representative
ground truth needed in OCT imaging. A previous
study used for the first time a large manually seg-
mented dataset (466 B-scans) but it was obtained
from healthy subjects (17 eyes) using an OCT cus-
tom-built device and the Amazon Mechanical Turk
(AMT) machine [24]. This human intelligence task
required the supervision of the manual segmentation
relatively often because workers performing the seg-
mentation tasks were not retinal specialists. While
the need for unbiased performance evaluation of
automated segmentation algorithms is obvious, there
does not exist a suitable dataset with ground truth
that reflects the realities of everyday retinal features
observed in clinical settings (e.g. pathologic cases
which contain discontinues surfaces and additional
abnormalities disrupting the retinal structure).

In addition to the lack of a common ground truth
in OCT imaging, minor information of the retinal tis-
sue from the OCT volume data is commonly re-
vealed besides the thickness of retinal layers [38–41].
Recent advances in OCT technology are adding the
capability to extract information on blood flow and
perfusion status of the retinal tissue as well as on
changes in the polarization state of the probing light
beam when interacting with the retinal tissue [42].
Therefore, it is expected that a more complete char-
acterization of the retinal tissue could potentiate the
diagnostic capability of the OCT technology. How-
ever, more active communication and multi-disci-
plinary collaboration between research groups would
be valuable. One way is to create an OCT volume
dataset annotated by expert graders. In this context,
the integration of efficient proofreading and editing
tools is of relevance when using automated analysis
techniques. This dataset needs to be large and repre-
sentative of both healthy eyes and pathological
cases. It should also be available to the public with
the hope that developers and researchers will use it
to evaluate and verify quantitative algorithms for ef-
ficiency, effectiveness, robustness and reliability.
Such dataset is crucial for the development of sur-
face detection software, especially for the training
based algorithms. This will facilitate procedures to
be developed using realistically challenging OCT
data, make it feasible to compare algorithms quanti-
tatively by running them on the same dataset, and
speed biomarker identification by providing clini-
cians and industry with metrics for comparing algo-
rithm performance and clinical assessment of thera-
peutic treatments. It will also assist with OCT tech-
nology development by highlighting areas of

strength and weakness of current developments. The
dataset and ground truth used in this work are avail-
able in the supporting information S2. Of note, an-
other potential solution to speed up the standardiza-
tion of OCT data analysis for clinical use would be a
free and open-source software initiative for optimi-
zation and wider use of OCT segmentation software
with an independent platform for processing data
from different OCT scanners [43].

This paper has introduced and discussed a num-
ber of important issues surrounding ground truth for
the evaluation of the performance of automated seg-
mentation software of OCT volume data. The focus
was on the review and comparison of five research-
oriented software with a common ground truth. The
reported performance differences of the software
may depend on the particular OCT device used, dif-
ferences in the training data used by each software
and their effectiveness to segment pathological fea-
tures of the diseased retina. Therefore, further inves-
tigation should be considered as the field evolves. In
summary, the use of OCT technology in clinical set-
tings is of great value, but reliable data analysis and
proper diagnosis of the various retinal diseases re-
quires a joint effort to create a large and representa-
tive repository of OCT information with free access
to help advance the judgment and decision making
processes of OCT developments and clinical applica-
tions.

Supporting Information

Additional supporting information may be found in
the online version of this article at the publisher’s
website.

Video S1: The example of exported video from
Spectralis. The annotated color lines were extracted
to form the retinal surfaces.

Data S2: The OCT dataset, segmentation results
from five software tools and the manual labeling
from two observers.

Acknowledgements This study was supported in part by
a NIH Grant No. NIH R01EY020607, a NIH Center
Grant No. P30-EY014801, by an unrestricted grant to the
University of Miami from Research to Prevent Blindness,
Inc., and by an Eotvos Scholarship of the Hungarian Scho-
larship Fund. Thanks to Sandra Pineda, B.S. for her assis-
tance with the recruitment of healthy subjects and clinical
coordination.

Author biographies Please see Supporting Information
online.

J. Tian et al.: Performance evaluation of automated segmentation software488

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biophotonics-journal.org



References

[1] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman,
W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K.
Gregory, C. A. Puliafito, and J. G. Fujimoto, Science
80, 1178–1181 (1991).

[2] A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L.
Marks, and S. A. Boppart, J. Biomed. Opt. 12, 051403
(2007).

[3] R. Hamdan, R. G. Gonzalez, S. Ghostine, and C.
Caussin, Archives of Cardiovascular Diseases 105,
529–534 (2012).

[4] C. A. Puliafito, Ophthalmic Surg. Lasers Imaging 41,
S5 (2010).

[5] J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, and S.
D. Jay, Optical Coherence Tomography of Ocular
Diseases, 3rd ed. Thorofare: Slack, Inc, 2004.

[6] W. Drexler, Journal of Biomedical Optics 9, 47 (2004).
[7] A. F. Fercher, Z. Med. Phys. 20, 251–276 (2010).
[8] Biopigen Inc, Envisu C-Class SDOCT System | Biopti-

gen, Inc. [Online]. Available: http://www.bioptigen.
com/products/c-class/ [Accessed: 06-Sep-2015].

[9] Canon, Canon OCT-HS100 – Eye Care – Canon Eu-
rope, 02-Jan-2012. [Online]. Available: http://www.
canon-europe.com/medical/eye_care/oct-hs100/ [Ac-
cessed: 06-Sep-2015].

[10] Optovue Inc, iVUE SD-OCT. [Online]. Available:
http://optovue.com/wp-content/uploads/2013/08/iVue-
Brochure.pdf [Accessed: 06-Sep-2015].

[11] Heidelberg Engineering GmbH, Spectralis HRA
+OCT User Manual Software Version 6.0, 2014.

[12] D. Koozekanani, K. Boyer, and C. Roberts, IEEE
Trans. Med. Imaging 20, 900–916 (2001).

[13] D. Cabrera Fernández, H. M. Salinas, and C. A. Pulia-
fito, Opt. Express 13, 10200–10216 (2005).

[14] T. Fabritius, S. Makita, M. Miura, R. Myllylä, and Y.
Yasuno, Opt. Express 17, 15659–15669 (2009).

[15] M. Shahidi, Z. Wang, and R. Zelkha, Am. J. Ophthal-
mol. 139, 1056–1061 (2005).

[16] H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J.
G. Fujimoto, and J. S. Schuman, Invest. Ophthalmol.
Vis. Sci. 46, 2012–2017 (2005).

[17] G. Gregori and R. W. Knighton, Invest. Ophthalmol.
Vis. Sci. 45, 3007 (2004).

[18] M. D. Abràmoff, M. K. Garvin, and M. Sonka, IEEE
Rev. Biomed. Eng. 3, 169–208 (2010).

[19] S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt,
and S. Farsiu, Opt. Express 18, 19413–19428 (2010).

[20] M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell,
T. L. Burns, and M. Sonka, IEEE Trans. Med. Im-
aging 28, 1436–1444 (2009).

[21] A. Lang, A. Carass, M. Hauser, E. S. Sotirchos, P. A.
Calabresi, H. S. Ying, and J. L. Prince, Biomed. Opt.
Express 4, 1133–1152 (2013).

[22] P. A. Dufour, L. Ceklic, H. Abdillahi, S. Schroder, S.
De Dzanet, U. Wolf-Schnurrbusch, and J. Kowal,
IEEE Trans. Med. Imaging 32, 531–543 (2013).

[23] A. Yazdanpanah, G. Hamarneh, B. R. Smith, and M.
V. Sarunic, IEEE Trans. Med. Imaging 30, 484–496
(2011).
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